Ascorbic acid and Mg-ATP co-regulate dopamine beta-monooxygenase activity in intact chromaffin granules.
نویسندگان
چکیده
Ascorbic acid and Mg-ATP were found to regulate norepinephrine biosynthesis in intact secretory vesicles synergistically and specifically, using the model system of isolated bovine chromaffin granules. Dopamine uptake into chromaffin granules was shown to be unrelated to the presence of Mg-ATP and ascorbic acid at external dopamine concentrations of 7.5 and 10 mM. Under these conditions of dopamine uptake, norepinephrine biosynthesis was enhanced 5-6-fold by Mg-ATP and ascorbic acid compared to control experiments with dopamine only. Furthermore, norepinephrine formation was enhanced approximately 3-fold by ascorbic acid and Mg-ATP together compared to norepinephrine formation in granules incubated with either substance alone. The action of Mg-ATP and ascorbic acid together was synergistic and independent of dopamine content of chromaffin granules as well as of dopamine uptake. The apparent Km of norepinephrine formation for external ascorbic acid was 376 microM and for external Mg-ATP was 132 microM, consistent with the larger amounts of cytosolic ascorbic acid and ATP that are available to chromaffin granules. Other physiologic reducing agents were not able to increase norepinephrine biosynthesis in the presence or absence of Mg-ATP. In addition, maximum enhancement of norepinephrine biosynthesis occurred only with the nucleotide ATP and the cation magnesium. The mechanism of the effect of ascorbic acid and Mg-ATP on norepinephrine biosynthesis was investigated and appeared to be independent of a positive membrane potential. The effect was also not mediated by direct action of ADP, ATP, or magnesium on the activity of soluble or particulate dopamine beta-monooxygenase. These data indicate that Mg-ATP and ascorbic acid specifically and synergistically co-regulate dopamine beta-monooxygenase activity in intact chromaffin granules, independent of substrate uptake. Although the mechanism is not known, the data are consistent with the possibility that the chromaffin granule ATPase mediates these effects.
منابع مشابه
Enhancement of norepinephrine biosynthesis by ascorbic acid in cultured bovine chromaffin cells.
Ascorbic acid donates electrons to dopamine beta-monooxygenase during the hydroxylation of dopamine to norepinephrine in vitro. However, the possible role of ascorbic acid in norepinephrine biosynthesis in vivo has not been defined. We therefore investigated the effect of newly accumulated ascorbic acid on catecholamine biosynthesis in cultured bovine adrenal chromaffin cells. Cells supplemente...
متن کاملSemidehydroascorbic acid as an intermediate in norepinephrine biosynthesis in chromaffin granules.
We investigated whether semidehydroascorbic acid was an intermediate in norepinephrine synthesis in chromaffin granules and in electron transfer across the chromaffin granule membrane. Semidehydroascorbic acid was measured in intact granules by electron spin resonance. In the presence of intragranular but not extragranular ascorbic acid, semidehydroascorbic acid was formed within granules in di...
متن کاملAscorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla.
The effect of ascorbic acid on the conversion of dopamine to norepinephrine was investigated in isolated chromaffin granules from bovine adrenal medulla. Ascorbic acid was shown to double the rate of [3H]norepinephrine formation from [3H]dopamine, despite no demonstrable accumulation of ascorbic acid into chromaffin granules. The enhancement of norepinephrine biosynthesis by ascorbic acid was d...
متن کاملAscorbic acid specifically enhances dopamine beta-monooxygenase activity in resting and stimulated chromaffin cells.
Ascorbic acid enhancement of norepinephrine formation from tyrosine in cultured bovine chromaffin cells was characterized in detail as a model system for determining ascorbate requirements. In resting cells, ascorbic acid increased dopamine beta-monooxygenase activity without changing tyrosine 3-monooxygenase activity. [14C]Norepinephrine specific activity was increased by ascorbic acid, while ...
متن کاملDemonstration of the ascorbate dependence of membrane-bound dopamine beta-monooxygenase in adrenal chromaffin granule ghosts.
Chromaffin granule ghosts from bovine adrenal medullae have been used to examine the ability of membrane-bound dopamine beta-monooxygenase to interact directly with intravesicular ascorbate and to investigate vectorial electron transfer from external ascorbate across the ghost membrane. Ghosts prepared by a modification of published procedures were shown to be fully active in both dopamine upta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 263 36 شماره
صفحات -
تاریخ انتشار 1988